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Automation of Ocean Model Performance Metrics

James D. Dykes', Jay F. Shriver' and Sean Ziegeler’

'Naval Research Laboratory
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Abstract - A system to rapidly and automatically assess the performance of numerical occan modeling systems was developed by the
U.S. Naval Research Laboratory (NRL). This includes the calculation of quantitative, objective metrics of the accuracy of ocean
forecasts. We will present results from this system, including metrics of surface and subsurface analysis and forecast fields. This work
supports the U.S. Naval Oceanographic Office (NAVOCEANO), which provides oceanographic products in response to requests for
environmental support for Navy operations. The development of a comprehensive automatcd systcm that provides model performance
information is expected to increase the consistency of results, reduce errors, and reduce time required to generate oceanographic
products.

1. INTRODUCTION

A continual requirement exists to quickly and frequently evaluate the validity and accuracy of oceanographic data, models,
algorithms, and products with performance metrics that are meaningful and applicable to the supported mission. Results from
these evaluations will help make performance improvements to the model and products, better assess the ocean environment, and
provide decision makers with an improved perspective on the ocean environment and the product. In addition to meeting
operational needs, this work supports research, development, and evaluation of new analysis and forecast systems intended for
operational use. The numerical models being assessed by this system have applications other than for Navy support, including
providing high resolution boundary conditions for even higher resolution coastal models; tracking pollutants; managing fisheries
and other marine resources; assessing ocean impacts on oil rigs and other structures; predicting storm surge resulting from
hurricanes; and providing inputs to water quality assessment.

NRL has developed new core operational components that include the required algorithms, methodology, software, and
guidance as follows: a) An automated system that creates, and stores the metrics of present and future ocean modeling analysis
and forecast systems, in real-time and over longer space and time scales, b) A subset of specifically acoustic metrics for the
evaluation of oceanographic data and models for mission support, and ¢} An automated system that facilitates data collection and
provides metrics of user forecasts and the operational impacts of those forecasts. This paper will focus on the first of these three.

11. METHODOLOGY

Since environmental analyses and forecasts are highly dependent on numerical ocean models (e.g., Navy Coastal Ocean Model
(NCOM)!") and the HYbrid Coordinate Ocean Model (HYCOM) Pl the ocean forecasters are interested in their accuracy.
Some standard metrics are already produced in various capacities and are now being produced automaticly. Examples include
time series comparisons, vertical profile comparisons, axis error of ocean features, anomaly correlation, RMS error, and skill
score. Parameters or state variables of interest include temperature, salinity, currents, sonic layer depth, and sound velocity
gradients. As a component of the Navy Coupled Ocean Data Assimilation (NCODA)*) analysis and data quality control software
(OCNQQ), a regular feed of quality-controlled in-situ observations (e.g., XBTs, CTDs, profiling floats, glider data, and surface
ship observations) is used.

Data structures and formats have been defined to facilitate database queries and analysis of model-observation and model-
model comparisons. Observation files come in the OCNQC format and is publicly available on the Global Ocean Data
Assimilation Experiment (GODAE)®! server where the data and software is provided and maintained by NRL Monterey. The
model output at NAVOCEANO is processed into netCDF using a standard convention based on COARDS as published by
University Corporation of Atmospheric Research (UCAR). A convention in netCDF that can handle atmospheric, ocean and
wave model output makes the processing of model output highly flexible. Software has been designed to support frequent data
processing (multiple data cuts per day) and multiple-nested models. Routines for generating automated evaluations of model
forecast statistics have been developed and pre-existing tools have been collected to create a generalized tool set, which included
user-interface tools to the metrics data.

An automated system was installed on the DoD High Performance Computing (HPC) machines of the Navy DoD
Supercomputer Resource Center (DSRC) where the models whose performance is to be monitored resides. Once the system is set

0-933957-38-1 ©2009 MTS



up for a list of models to be processed, it runs fully automatically without human intervention. Here the routines that compile
model-observations and model-model comparisons are run in real-time, using software compiled in C and tested on multiple
platforms. As the database of comparisons accumulate, the latest files are transferred to the user spaces at NAVOCEANO where
ocean forecasters use the data to aid in interpreting ocean model nowcasts and forecasts. A schematic of the autometrics system is
shown in Figure 1.

Auto Metrics

b Matching and
& Models in netCDF Statistics
! e.g. NCOM Tools ]
: NCODA, HYCOM
SWAN :
Observed and Model Data
. ; Comparisons Statistics 5

High Performance Computing $
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Figure 1: Schematic of the automatcd metrics system.

The model-observations comparison database consist of files of matches, a.k.a. matchups, between modelled and observed
data. For every observation point in geographic location and forecast cycle time there corresponds modelled values linearly
interpolated in time and space. For observation profiles e.g. CTD and XBT, the observed values are interpolated to the modelled
levels using a piece-wise hermite polynomial scheme, although many times the vertical density of observed data is so high
compared to the model level density, that the resulting observed interpolated values to model levels amounts to subsampling. For
now glider observations are reported as profiles, but later the format of glider data will be considered the most general case of
finding an individual point in the four-dimensional space, X, y, z, and t, corresponding to longitude, latitude, level and time.
Usually, the profiled observations are assimilated into the model analysis but they can easily be excluded without making a huge
impact on model performance while providing a source of independent data.

The measured parameters from observation profiles includes temperature, salinity and bottom depth. The files we use were
processed in the OCNQC routines and thus include data quality control flags to allow us to decide the criteria for excluding data.
The routine that builds the matchups database also computes sound speed based on the observed and modelled profiles results of
which are added to the database of matched up data with which to compute statistics. In addition, selected acoustics
characteristics of the ocean such as sonic layer depth (SLD) are computed based on the sound speed profile and added to the
matchup database. These acoustic parameters are computed based on each of the original, uninterpreted observation profiles and
on the modelled profiles using the model levels.

Generally, the coverage of observation profiles is not as complete as that of remotely sensed data, which includes a systematic
report in swathes of brightness temperature and regular tracks of highly accurate altimeter height measurements. Matchups could
be accomplished with these data, biut the database would quickly become unmanageably large for timely and practical
processing. Another disadvantage is that only surface data is available. In addition, these data almost always assimilated into the
model analysis where synthetic profiles are derived based on these data.

Having processed remotely sensed data into the analysis, i.e. the intialization of a model forecast run, one can use the analysis
as a basis for model performance by see what the forecasts have done to look like the analysis valid for the same time. Model-
model comparisons are important since they help the oceanographer forecaster get a sense of the model performance as well as
the rate of change of the environmental conditions. The simple difference between two fields, say, the current temperature
analysis and the 24-hour forecast, provide a sense that the model is “behaving” well. Further, a collection of these over time
contributes to statistics that reveal model tendencies. The mean differences and RMS differences for each of the grid points over
a long enough time may provide a statistical significant result distinguishing the model performance spatially over the domain, i.
e. the spatial information would reveal where in a certain domain does the model better handle the physics.



Whether it be model-model or observation-model comparison-based statistics, a reference to the level of model skill is needed
to help give the model evaluator a sense of the level of performance. Typically, statistics of forecasts based on model skill are
compared to the statistics of using persistence as a predictor. Persistence takes current conditions and predicts that this will be the
same in the future without any other consideration. Arguably, where the environment clearly changes very slowly a forecast for
conditions in 72 hours can be a fairly reasonable predictor, in which case we may be actuallly regarding a climatological feature.
However, in regimes of rapidly changing conditions, persistence is expected to be a very bad predictor. The hope is that in either
case a forecast with added skill beyond simply maintaining the same value should “beat” persistence, i.e. the statistics of the
comparisons between ground truth and forecasts should be better than comparisons of persistent condition to reality. If this were
not the case, than this implies that the subject forecasting method, the model, has little skill. The matchup system utilized in this
automated system is also implemented to compare all the ground truth for a certain forecast period to the initial state variables,
producing a database of the same size as the matchups based on the interpolating in space and time for model output forecasts.
The statistics for both are then compared.

A one-for-one comparison of gridded data does not tell the whole story. Besides determining the error at a fixed position, it is
also important to determine the displacement error (i.e., how far is a forecasted feature from its nowcasted location). Automated
displacement error algorithms (both magnitude and direction) have been developed and implemented to assess forecasted feature
placement accuracy and is explained in the following way. The displacement vector field is generated using a deformable
registration method”! . A two-dimensional cubic B-spline mesh is imposed over the forecast data set. Each control point of the
mesh can be adjusted in the x or y direction, and each adjustment produces a smooth distortion. An advanced gradient-descent
optimization routine iteratively chooses the adjustments to improve the squared-errors between the forecast and analysis data sets.
The B-spline mesh can be transformed into a displacement field with a vector at each data point.

As a further improvement, the error displacement are constructed using the gradients of the scalar fields. The gradient reduces
the influence of regional biases. For example, if an eddy feature were warmer in the analysis but remained in the same location,
the gradient would not change as much. This approach utilizes a Gaussian-smoothed gradient, which widens the high-gradient
features making it easier to track them from one data set to the next.

[1I. RESULTS

Processing of data and model comparisons are run at the Navy DoD Supercomputing Resource Center (DSRC) and the results
of the comparisons and statistics calculation are visualized using GIS GUIs and tools within the client/viewer for ocean product
performance metrics system depicted in Figure 2. Also, model performance metrics in the form of statistics of model vs.
observations can be displayed in a window of the client/viewer as depicted in Figure 3. From the database of comparisons
between model output and observation profiles the paired match-up profiles are grouped in 24-hour segments. Their mean
differences, RMS errors, and correlations are computed for each model run for each model level. Several model runs are
displayed in a series providing an indicator of model performance trends. For example, the RMS error of the 0-24 hour forecasts
are usually less than the 24-48 hour RMS error, which is expected. Also, from these graphics comparisons between model and
observed values that are very different can be easily identifed and even rooted out if warranted.

An additional feature within the GUI tool where model performance statistics are displayed is the ability to display the profile
matchups as they are selected in the scatterplot (Figure 4). This is particularly useful when the investigation of extreme
observations are warranted. This allows the visual determination of valid observations to catch those rogue values that were not
caught by OCNQC. This also allows for the elimination of selected observations from the loaded feature set and the
recomputation of statistics.

Figure 5 shows an example of the results from the automated displacement error algorithms (both magnitude and direction)
which assess forecasted feature placement accuracy. This display compares forecasted with analysis sea surface temperature
output from NCOM. The vectors in Figure 5(all identical) represent the relative movement of data points from a 24-hour forecast
(a,c) to an analysis the next day (b,d). This provides complimentary information to that of a simple point-wise difference between
the two. The latter results in error values in the unit space of the scalar (e.g., temperature). This novel method results in error
quantities in spatial units (e.g., degrees of latitude/longitude). Figures 5(c,d) show the smoothed gradient of (a,b), respectively.
Visually, the changes in feature positions are more apparent when looking at (c,d). The next step is to assess model feature
placement in comparison to observations, and this work is ongoing.
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Figure 2: Example of display in the ellent/wewer used by oceanographers at NAVOCEANOQO. A point within that same domain was seleeted to present

the profiles of models and observed temperature, salinity and soundspeed at that point.
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Figure 3: Display of statisties of comparisons between model and observation profiles as summary bar graphs and profile plots within the metries
client/viewer uscd by oceanographers at NAVOCEANQO. In this case the bar graphs revealed abarrent model-obervation eomparisons for a few modcl
runs during the month. The observations were diseovered to be bad.
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Figure 4: Display of scatter plots of model obcrvation comparisons, on the left for persistence matchups and on the right for interpolated modcl forccasts
matchups. These two are displaycd sidc-by-side to determine with the model has the skill to predict better than persistence.
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